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Two techniques are described for finding relatively low minima of the energy of a 
polypeptide. The first, the method of “partial energies,” in which successively more 
components of the total energy function are included in the minimization procedure, 
is applicable primarily to empirical conformational energy calculations. The second, 
the method of “cubic subdivision,” in which high energy regions are eliminated from the 
space to be searched, is a more general global minimization algorithm. The results 
of both methods on “tetraglycine” are presented, and trials on other problems are 
discussed. 

INTRODUCTION 

A major problem in conformational energy calculations on polypeptides and 
proteins is the existence of many minima in the potential energy surface, thereby 
making it very difficult to locate the global minimum [I]. Therefore, much 
attention has recently been devoted [2-51 to the development of methods for 
searching for the global minimum of the energy of a polypeptide. These methods 
have proved successful for molecules whose energy depends on a small number of 
variables. However, these methods tend to waste time, by examining in great 
detail some regions which are unlikely to contain the global minimum. We present 
two new algorithms, those of “partial energies” and “cubic subdivision,” which 
are more efficient in this respect. In principle, these two methods (and also previous 
ones [2-51) could be applied to calculations on polypeptides of any size, with 
anticipated success in locating the global minimum, but practical restrictions on 
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computer time and memory limit the thoroughness of the search, as governed by 
certain parameters (adjusted by the user) in each method. However, different 
algorithms give varying degrees of success for the same computational effort, 
depending on the particular problem at hand. The two methods to be described in 
this paper were outstandingly successful on two different types of problems, as 
will be shown. 

METHODS 

Partial Energies 

Since the empirical energy function of a polypeptide is a very complicated one [I], 
we can simplify the search for the global minimum of the energy by initially 
including only the “most important” energy term, and then adding in the remaining 
terms in successive stages. By the most important energy term, we mean a portion 
of the total energy, the minimization of which can greatly affect the conformation 
of a large part of the molecule. Thus, by this criterion, nonbonded interactions 
are considered “unimportant,” because only small alterations of most confor- 
mations are required to relieve atomic overlaps, even though the energy change in 
the process may be very large. The method of “partial energies” consists of the 
following steps: (a) Select many starting conformations, perhaps at random, if 
there is no better way; (b) starting with these, minimize only the “most important” 
energy term for each conformation; (c) starting with the conformations obtained 
in the previous step, minimize the previous energy term plus the next most 
important one; (d) iterate step (c) until the entire energy function is used in the 
minimization procedure. In conformational energy calculations on polypeptides, 
the energy terms (in decreasing order of importance) are considered to be: 
(a) disulfide bond stretching, bending, and torsion (to insure the proper closing of 
cystine bridges); (b) hydrogen bonding; (c) electrostatic interactions; (d) nonbonded 
interactions; and (e) hydration energy and intrinsic rotational potentials. This 
ordering is chosen because gross structural alterations may well be required to 
close disulfide bridges, but then, smaller changes are needed to form hydrogen 
bonds, after which even smaller changes are necessary to optimize the electrostatic 
energy, and so on. 

The algorithm begins by first properly connecting the disulfide bridges, which 
is an easy task. Then, keeping the disulfide bridges formed, the best hydrogen bonds 
possible are formed. Subsequently, slight rearrangements are introduced to improve 
the electrostatic interactions. Finally, small alterations are made to relieve any 
atomic overlaps. The basic idea is that a structure must have well closed disulfide 
bridges and good hydrogen bonding in order to be of especially low energy; the 
relatively intricate demands of the nonbonded and electrostatic interactions can 
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be met without drastic alterations of the basic structure, so that their inclusion at 
the start would complicate the problem unnecessarily. 

It may be noted that a different view is taken in the energetic retiement of the 
x-ray coordinates of proteins [6]. There, the nonbonded energy (with the inclusion 
of hydrogen-bonding and disulfide-bond potentials) is first minimized to reduce 
atomic overlaps. 

Cubic Subdivision 

The basic idea in this procedure is to eliminate high-energy regions, with as 
little computer time as possible, and then to search the remaining low-energy 
regions more thoroughly. In the earlier “spotting” method [4], this was done by 
accurately locating surfaces of constant energy, which required numerous energy 
evaluations at points far from the global minimum; in “cubic subdivision,” the 
policy is to spend as little time as possible examining unpromising regions. 

A molecule (of fixed bond lengths and bond angles) with n bonds, about which 
rotation (from 0 to 27r radians) can take place, has a conformational space which 
may be regarded as an n-dimensional hypercube, each of whose edges in 27~ radians 
in length. For a dipeptide, this is simply the familiar c$-# map [l, 21. The energy is 
evaluated at two diagonally opposite corners of the hypercube (although, of course, 
these first two energies must be the same, since the two points correspond to the 
same conformation). For the dipeptide (n = 2), these are the lower left and upper 
right corners. In general, for any n, the first corner is the one having each coordinate 
algebraically as small or smaller than the corresponding coordinate of any other 
corner, and the second corner is the one with the largest coordinates. This choice 
of diagonal and the implicit choice of origin are arbitrary, and the use of other 
diagonals or origins might affect the results of the algorithm, particularly when 
applied to difficult problems; however, these effects have not been investigated. 
After evaluating the energies at these two points, the n-dimensional cube is then 
subdivided into 2” smaller cubes, each having edges whose length is half of that 
in the original cube. The energies are then evaluated at two diagonally opposite 
comers of each subcube, using the same (above) criterion to pick the first and 
second corners of each subcube. Once the energy of any point (which may be a 
comer of more than one subcube) has been calculated, it is remembered as long 
as that information may be of any use, and the lowest energy so far found (the 
“interim global minimum”) is remembered. According to various criteria, some 
cubes are eliminated from further consideration as being unlikely to contain points 
of energy lower than that at the interim global minimum, as discussed below. The 
remaining cubes are further subdivided, as before, and so on, until there remain 
only a few cubes of very small size, e.g., cubes whose edges are 10” long. The centers 
of these cubes are taken to be the starting points for ordinary energy minimization, 
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and the resulting structures should be of very low energy, and hopefully include 
the global minimum. 

In order to devise a criterion for eliminating a cube from fruther considerations, 
we assume that the function being minimized is continuous, has continuous first 
and second derivatives, and, further, that there is an upper bound on the second 
derivative throughout the space being searched. This prevents the energy (which 
must have the computed values at the opposite corners of a cube) from dropping 
too low along the diagonal of the cube. In fact, there are singularities in the energy 
of a polypeptide, so that the function is not continuous everywhere, and the second 
derivatives are not bounded throughout. Nevertheless, in practice, the method 
works successfully on such systems. In addition, we assume that the energy at any 
point within a cube cannot be lower than the lowest value that a quadratic function 
could attain along the diagonal line connecting the two corners of the cube where 
the energy has been evaluated. This lowest possible energy is finite, since the second 
derivative of the energy is assumed to be bounded, and this assumption (based on 
a quadratic approximation) becomes increasingly accurate as cubes are further 
subdivided, and become-smaller and smaller. In fact, the lowest possible energy 
varies as the square of the cube edge. Each cube is tested to see if it is possible to 
&id an energy along the diagonal line (without exceeding the upper bound on the 
second derivative) lower than the “interim global minimum;” if not, that cube 
is eliminated. If this process is allowed to go to completion, only one small cube of 
low energy will be given as the location of the global minimum. However, if the 
calculation is stopped somewhat before that, in general, there will be several cubes 
remaining (corresponding to the location of the few lowest minima), which is the 
more useful result for calculations on polypeptides. 

In practice, “cubic subdivision” is a fast and thorough way of finding the global 
minimum, since no derivatives are required, and much of conformation space 
can be eliminated fairly quickly. The major difficulty with this method is the large 
number of quantities that have to be stored in the memory of the computer. If 
the original cube in the n-dimensional space represents the 0th subdivision, then 
after the mth subdivision (assuming that there have been no eliminations), 

number of points at which 

the energy has been evaluated = NC = (2” + I)” - (2” - 2), (1) 

number of cubes = N, = 2”“, (2) 

maximum distance 

between points in the same cube = r = 2dJ22-” radians, (3) 
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and the lowest-energy point will have been located to an accuracy of 

d = 2742-9. (4) 

Hence, in a search, there will have been at most iV, energy evaluations and IV, 
conformations remembered (neglecting occasional m-fold duplication of some 
points). The global minimum will be located to an accuracy of d, and the energy 
function is assumed quadratic over a range r. The higher the stated value of the 
upper bound on the second derivative, the more thorough the search; the lower the 
bound, the more cubes will be eliminated in earlier iterations. 

RESULTS 

Partial Energies 

The method of “partial energies” was applied to “tetraglycine,” the same six- 
variable molecule treated previously by the “spotting” algorithm [4]. Since this 
molecule contains no disulfide bonds, the “most important” energy term is the 
hydrogen-bonding one. Each CO group was allowed to interact with each NH 
group, except for 0 and H atom pairs, whose relative positions are affected by 
rotation about only one intervening single bond (so-called l-4 interaction). The 
hydrogen-bonding energy function used [4] contains both an electrostatic and a 
nonbonding energy term for the interaction between the C’, 0, N, and H atoms. 
No solvent interaction or intrinsic rotational potentials were included, so that 
comparisons could be made with the results obtained with the “spotting” 
technique [4]. Using exactly the same rigid geometry (fixed bond lengths, 
bond angles, and planar trans peptide groups) and energy parameters as 
before [4], and 20 different conformations A, chosen at random, the hydrogen 
bonding energies of these starting conformations were minimized to yield final 
conformations B. Of the 20 B’s, seven were duplicates of the 13 others C, so that 
the seven were discarded. The total energies (hydrogen-bonding plus all other 
electrostatic and nonbonding energies) of these 13 conformations C were then 
minimized to yield 13 different conformations D. 

The changes in dihedral angles in going from C to D were generally 20” or less, 
but sometimes there were movements of over 60”. Hence, the addition of electro- 
static and nonbonded energy terms occasionally induces more than minor 
alterations in the structure. The energies of the 13 final conformations D, ranged 
from +5.79 to -3.57 kcal/mole (with a mean of +0.22 and a median of 
+0.12 kcal/mole). The lowest-energy conformation (-3.57 kcal/mole) was 
(A, #1, &, &, &, I,&) = (-47”, 113”, 48”, 35”, 118”, -33”), which has about 
three partial hydrogen bonds. Approximately one hour of computer time on the 
IBM 360/65 computer was required for the whole procedure. 
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Cubic Subdivision 

The method of “cubic subdivision” was tested first on an artificial “energy” 
function of two variables, 

qz, , zz> 1 0.5 = 
2.0001 + cos 21 + cos 2, 

+ 
3.01 + cos 2, + 2 sin 5 

+ sin 32, + sin 32, , (5) 

which has 9 minima, 7 maxima, and 2 very high maxima resembling the infinite 
peaks caused by atomic overlaps. The algorithm successfully located the two 
lowest minima (within lo”, after only 136 function evaluations) by arbitrarily 
assigning the upper limit of the second derivatives as 10. Ordinary mapping would 
have required 362 = 1296 energy evaluations for similar accuracy. Indeed, on this 
and similar problems, cubic subdivision far excels any other general global 
minimization algorithm tried in this laboratory [2-51. When the method was 
applied to tetraglycine with the same geometry and energies as used before [4] 
(adjusting the upper bound of the second derivative to 20 kcal/radian2, so that no 
more than 10,000 points had to be remembered), only one hypercube having edge 
of length 10” remained after one hour on the IBM 360/65 computer. Using this as 
the starting point for local minimization, a minimum which had an energy of 
-0.85 Kcal/mole was reached. 

DISCUSSION 

Although the method of “cubic subdivision” works remarkably well on two- 
dimensional problems, it did not yield as low an energy minimum as the method 
of “partial energies” did in the same amount of computer time applied to tetra- 
glycine. The known lowest-energy conformations, found by “spotting,” and 
“partial energies,” are located in subcubes which, unfortunately, were eliminated. 
On the other hand, the low-energy structure (-0.85 kcal/mole) obtained by 
“cubic subdivision” had a lower energy than most of the conformations found by 
the method of partial energies. 

The best structure of tetraglycine found by “spotting” [4] had an energy of 
-3.33 kcal/mole, while the best one found by the method of partial energies 
(see Results section for conformation) had an energy of -3.57 kcal/mole. Of all 
the low-energy conformations found by both methods (spotting and partial 
energies), only one was common to both sets of computations, viz., the one with 
(cJ$, &, c$~, &, &, I+$,) = (-71.5”, 64.7”, -71.5”, 65.0”, 71.7”, -64.5”) and an 
energy of -2.50 kcal/mole. With the exception of the lowest-energy structure 
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(-3.57 kcal/mole), the low-energy conformations (-3.33 to -2.50 kcal/mole) 
found by either method (spotting or partial energies) were essentially combinations 
of (4, #) = (+60”, -60”) and (-60”, +60”), which are axial and equatorial 
seven-membered hydrogen-bonded rings, respectively, for each of the three 
glycyl residues. The regular a-helix becomes the preferred structure only with 
longer polypeptide chains. 

CONCLUSION 

The method of “cubic subdivision” seems to be a good, very general technique 
for problems with six or fewer variables. The method of “partial energies” is 
apparently a better one for larger structures, for which almost all possible hydrogen- 
bonding schemes can be found, and may prove useful for small polypeptides, 
such as gramicidin S, oxytocin, vasopressin, etc. For larger molecules, it will be 
necessary to have a better initial estimate of the native conformation (perhaps by 
techniques based on near-neighbor interactions [l]) before the method of partial 
energies can be applied. 
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